Metric graphs

NLS

Ground states

Some proof techniques

On the notion of "ground state" for the nonlinear Schrödinger equation on metric graphs Séminaire EDP du Laboratoire de Mathématiques de Besançon

Damien Galant

CERAMATHS/DMATHS

Département de Mathématique

Université Polytechnique Hauts-de-France Université de Mons F.R.S.-FNRS Research Fellow

Joint work with Colette De Coster (UPHF), Simone Dovetta and Enrico Serra (Politecnico di Torino)

Thursday 16 March 2023

Metric graphs	NLS	Ground states	Some proof techniques

1 Metric graphs

2 The nonlinear Schrödinger equation on metric graphs

3 On the notion of ground state

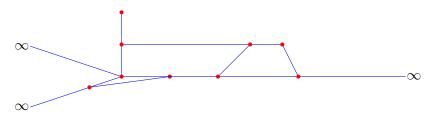
4 Some proof techniques

Metric graphs	NLS	Ground states	Some proof techniques

A metric graph is made of vertices

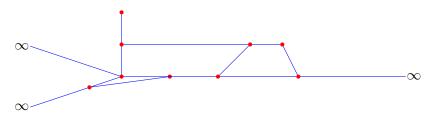
Metric graphs	NLS	Ground states	Some proof techniques

A metric graph is made of vertices and of edges joining the vertices or going to infinity.



Metric graphs	NLS	Ground states	Some proof techniques

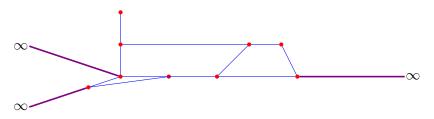
A metric graph is made of vertices and of edges joining the vertices or going to infinity.



metric graphs: the length of edges are important.

Metric graphs	NLS	Ground states	Some proof techniques

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

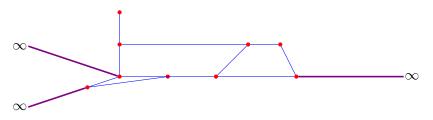


metric graphs: the length of edges are important.

• the edges going to infinity are halflines and have *infinite length*.

Metric graphs	NLS	Ground states	Some proof techniques

A metric graph is made of vertices and of edges joining the vertices or going to infinity.



- *metric* graphs: the length of edges are important.
- the edges going to infinity are halflines and have *infinite length*.
- a metric graph is *compact* if and only if it has a finite number of edges of finite length.

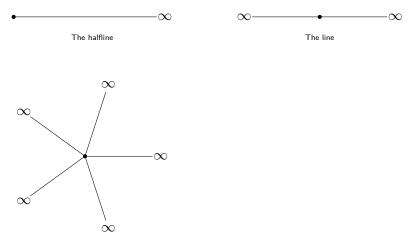
Metric graphs	NLS	Ground states	Some proof techniques

 $---\infty$

The halfline

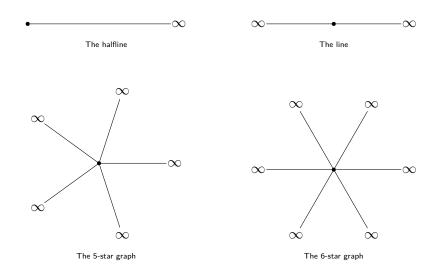
Metric graphs	NLS	Ground states	Some proof techniques

Metric graphs	NLS	Ground states	Some proof techniques



The 5-star graph

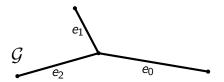
Metric graphs	NLS	Ground states	Some proof techniques



Metric graphs	NLS	Ground states

Some proof techniques

Functions defined on metric graphs

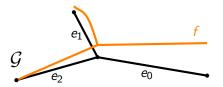


A metric graph G with three edges e_0 (length 5), e_1 (length 4) and e_2 (length 3)

Metric graphs	NLS	Ground states	So

Some proof techniques

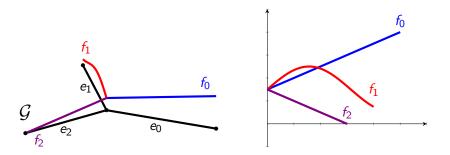
Functions defined on metric graphs



A metric graph \mathcal{G} with three edges e_0 (length 5), e_1 (length 4) and e_2 (length 3), a function $f : \mathcal{G} \to \mathbb{R}$

Metric graphs	NLS	Ground states	Some proof techniques

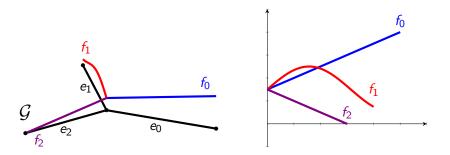
Functions defined on metric graphs



A metric graph \mathcal{G} with three edges e_0 (length 5), e_1 (length 4) and e_2 (length 3), a function $f : \mathcal{G} \to \mathbb{R}$, and the three associated real functions.

Metric graphs	NLS	Ground states	Some proof techniques

Functions defined on metric graphs



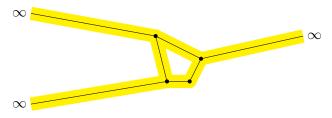
A metric graph \mathcal{G} with three edges e_0 (length 5), e_1 (length 4) and e_2 (length 3), a function $f : \mathcal{G} \to \mathbb{R}$, and the three associated real functions.

$$\int_{\mathcal{G}} f \, \mathrm{d}x \stackrel{\text{def}}{=} \int_{0}^{5} f_{0}(x) \, \mathrm{d}x + \int_{0}^{4} f_{1}(x) \, \mathrm{d}x + \int_{0}^{3} f_{2}(x) \, \mathrm{d}x$$

Metric graphs	NLS	Ground states	Some proof techniques

Why studying metric graphs? Physical motivations

Modeling structures where only one spatial direction is important.



A « fat graph » and the underlying metric graph

Metric graphs NLS Ground states Some proof technique
--

Metric graphs	NLS	Ground states	Some proof techniques

$$\begin{cases} u'' + |u|^{p-2}u = \lambda u & \text{on each edge } e \text{ of } \mathcal{G}, \end{cases}$$

Metric graphs	NLS	Ground states	Some proof techniques

$$\begin{cases} u'' + |u|^{p-2}u = \lambda u & \text{on each edge } e \text{ of } \mathcal{G}, \\ u \text{ is continuous} & \text{ for every vertex } v \text{ of } \mathcal{G}, \end{cases}$$

Metric graphs	NLS	Ground states	Some proof techniques
---------------	-----	---------------	-----------------------

$$\begin{cases} u'' + |u|^{p-2}u = \lambda u & \text{on each edge } e \text{ of } \mathcal{G}, \\ u \text{ is continuous} & \text{for every vertex } v \text{ of } \mathcal{G}, \\ \sum_{e \succ v} \frac{\mathrm{d}u}{\mathrm{d}x_e}(v) = 0 & \text{ for every vertex } v \text{ of } \mathcal{G}, \end{cases}$$

Metric graphs	NLS	Ground states	Some proof techniques
---------------	-----	---------------	-----------------------

Given constants p > 2 and $\lambda > 0$, we are interested in solutions $u \in L^2(\mathcal{G})$ of the differential system

$$\begin{cases} u'' + |u|^{p-2}u = \lambda u & \text{on each edge } e \text{ of } \mathcal{G}, \\ u \text{ is continuous} & \text{for every vertex } v \text{ of } \mathcal{G}, \\ \sum_{e \succ v} \frac{\mathrm{d}u}{\mathrm{d}x_e}(v) = 0 & \text{ for every vertex } v \text{ of } \mathcal{G}, \end{cases}$$

where the symbol $e \succ v$ means that the sum ranges over all edges of vertex v and where $\frac{du}{dx_e}(v)$ is the outgoing derivative of u at v (*Kirchhoff's condition*).

Metric graphs	NLS	Ground states	Some proof techniques
---------------	-----	---------------	-----------------------

Given constants p > 2 and $\lambda > 0$, we are interested in solutions $u \in L^2(\mathcal{G})$ of the differential system

$$\begin{cases} u'' + |u|^{p-2}u = \lambda u & \text{on each edge } e \text{ of } \mathcal{G}, \\ u \text{ is continuous} & \text{for every vertex } v \text{ of } \mathcal{G}, \\ \sum_{e \succ v} \frac{\mathrm{d}u}{\mathrm{d}x_e}(v) = 0 & \text{ for every vertex } v \text{ of } \mathcal{G}, \end{cases}$$
(NLS)

where the symbol $e \succ v$ means that the sum ranges over all edges of vertex v and where $\frac{du}{dx_e}(v)$ is the outgoing derivative of u at v (*Kirchhoff's condition*).

Metric graphs	NLS	Ground states	Some proof techniques
---------------	-----	---------------	-----------------------

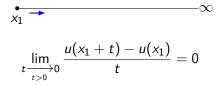
Given constants p > 2 and $\lambda > 0$, we are interested in solutions $u \in L^2(\mathcal{G})$ of the differential system

$$\begin{cases} u'' + |u|^{p-2}u = \lambda u & \text{on each edge } e \text{ of } \mathcal{G}, \\ u \text{ is continuous} & \text{for every vertex V of } \mathcal{G}, \\ \sum_{e \succ V} \frac{\mathrm{d}u}{\mathrm{d}x_e}(V) = 0 & \text{ for every vertex V of } \mathcal{G}, \end{cases}$$
(NLS)

where the symbol $e \succ v$ means that the sum ranges over all edges of vertex v and where $\frac{du}{dx_e}(v)$ is the outgoing derivative of u at v (*Kirchhoff's condition*). We denote by $S_{\lambda}(\mathcal{G})$ the set of nonzero solutions of the differential system.

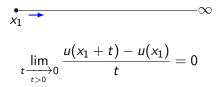
Metric graphs	NLS	Ground states	Some proof techniques

Kirchhoff's condition: degree one nodes



Metric graphs	NLS	Ground states	Some proof techniques

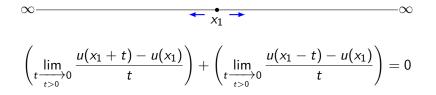
Kirchhoff's condition: degree one nodes



In other words, the derivative of u at x_1 vanishes: this is the usual Neumann condition.

Metric graphs	NLS	Ground states	Some proof techniques

Kirchhoff's condition: degree two nodes



Metric graphs	NLS	Ground states	Some proof techniques

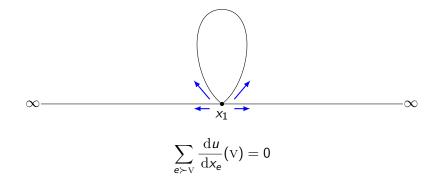
Kirchhoff's condition: degree two nodes

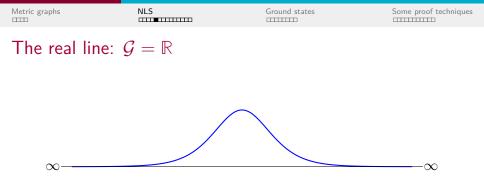
In other words, the left and right derivatives of u are equal, which simply

means that u is differentiable at x_1 . This explains why usually we do not put degree two nodes.

Metric graphs	NLS	Ground states	Some proof techniques

Kirchhoff's condition in general: outgoing derivatives

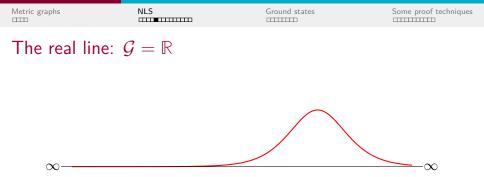




$$\mathcal{S}_{\lambda}(\mathbb{R}) = \left\{ \pm \varphi_{\lambda}(x+a) \mid a \in \mathbb{R} \right\}$$

where the $\mathit{soliton}\ \varphi_\lambda$ is the unique strictly positive and even solution to

$$u'' + |u|^{p-2}u = \lambda u.$$



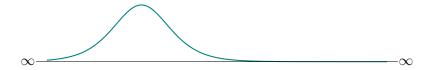
$$\mathcal{S}_{\lambda}(\mathbb{R}) = \left\{ \pm \varphi_{\lambda}(x+a) \mid a \in \mathbb{R} \right\}$$

where the $\mathit{soliton}\ \varphi_\lambda$ is the unique strictly positive and even solution to

$$u'' + |u|^{p-2}u = \lambda u.$$

Metric graphs	NLS	Ground states	Some proof techniques

The real line: $\mathcal{G} = \mathbb{R}$



$$\mathcal{S}_{\lambda}(\mathbb{R}) = \left\{ \pm \varphi_{\lambda}(x + a) \mid a \in \mathbb{R} \right\}$$

where the $\mathit{soliton}\ \varphi_\lambda$ is the unique strictly positive and even solution to

$$u'' + |u|^{p-2}u = \lambda u.$$

Metric graphs	NLS	Ground states	Some proof techniques
The halfline:	$\mathcal{G} = \mathbb{R}^+ = [0, +c]$	∞ [
~			
•		o	0

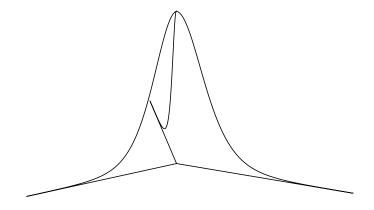
$$\mathcal{S}_\lambda(\mathbb{R}^+) = \left\{\pm arphi_\lambda(x)_{|\mathbb{R}^+}
ight\}$$

Solutions are *half-solitons*: no more translations!

Metric graphs	NLS	Ground states	S

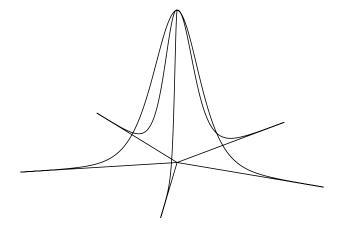
Some proof techniques

The positive solution on the 3-star graph



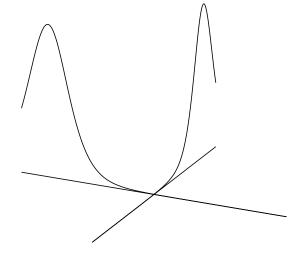
Metric graphs	NLS	Ground states	Some proof techniques

The positive solution on the 5-star graph



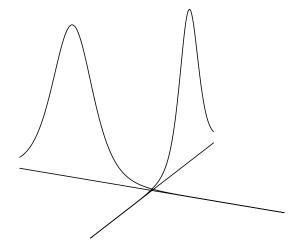
Metric graphs	NLS	Ground states	Some proof techniques

A continuous family of solutions on the 4-star graph

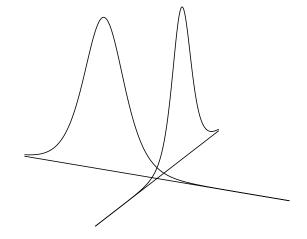


Metric graphs	NLS	Ground states	Some proof techniques

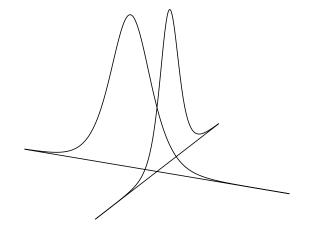
A continuous family of solutions on the 4-star graph



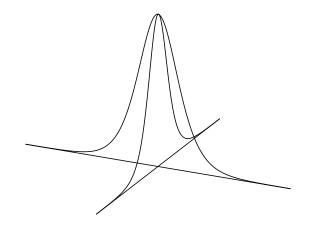
Metric graphs	NLS	Ground states	Some proof techniques



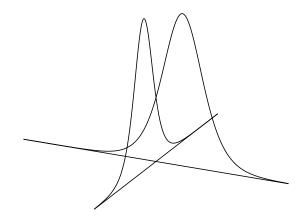
Metric graphs	NLS	Ground states	Some proof techniques



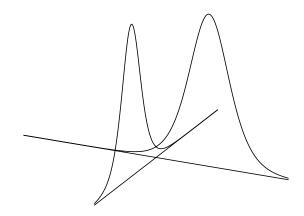
Metric graphs	NLS	Ground states	Some proof techniques



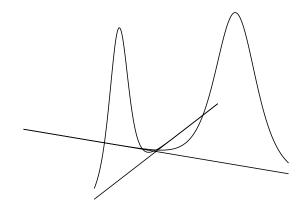
Metric graphs	NLS	Ground states	Some proof techniques



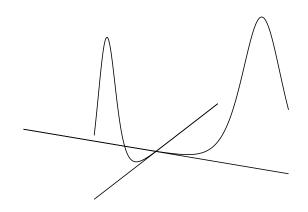
Metric graphs	NLS	Ground states	Some proof techniques



Metric graphs	NLS	Ground states	Some proof techniques



Metric graphs	NLS	Ground states	Some proof techniques



Metric graphs	NLS	Ground states	Some proof techniques

Variational formulation

We work on the Sobolev space

$$H^1(\mathcal{G}) := \Big\{ u : \mathcal{G} \to \mathbb{R} \mid u \text{ is continuous, } u, u' \in L^2(\mathcal{G}) \Big\}.$$

Metric graphs NLS Ground states Some proof techniqu TTTT TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	ues
---	-----

Variational formulation

We work on the Sobolev space

$$H^1(\mathcal{G}) := \Big\{ u : \mathcal{G}
ightarrow \mathbb{R} \mid u ext{ is continuous}, u, u' \in L^2(\mathcal{G}) \Big\}.$$

Solutions of (NLS) correspond to critical points of the action functional

$$J_{\lambda}(u) := rac{1}{2} \|u'\|_{L^2(\mathcal{G})}^2 + rac{\lambda}{2} \|u\|_{L^2(\mathcal{G})}^2 - rac{1}{p} \|u\|_{L^p(\mathcal{G})}^p.$$

Metric graphs	NLS	Ground states	Some proof techniques

The differential of $J_{\lambda}: H^1(\mathcal{G}) \to \mathbb{R}$ is given by

$$J'_{\lambda}(u)[v] = \int_{\mathcal{G}} u'(x)v'(x) \,\mathrm{d}x + \lambda \int_{\mathcal{G}} u(x)v(x) \,\mathrm{d}x - \int_{\mathcal{G}} |u(x)|^{p-2}u(x)v(x) \,\mathrm{d}x$$

Metric graphs	NLS

The differential of $J_{\lambda}: H^1(\mathcal{G}) \to \mathbb{R}$ is given by

$$J'_{\lambda}(u)[v] = \int_{\mathcal{G}} u'(x)v'(x) \,\mathrm{d}x + \lambda \int_{\mathcal{G}} u(x)v(x) \,\mathrm{d}x - \int_{\mathcal{G}} |u(x)|^{p-2}u(x)v(x) \,\mathrm{d}x$$

If φ has compact support in the interior of an edge $e = {}_{\mathrm{AB}}$, we have

 $0=J_{\lambda}^{\prime}(u)[\varphi]$

Metric	graphs

NLS	

The differential of $J_{\lambda}: H^1(\mathcal{G}) \to \mathbb{R}$ is given by

$$J'_{\lambda}(u)[v] = \int_{\mathcal{G}} u'(x)v'(x) \,\mathrm{d}x + \lambda \int_{\mathcal{G}} u(x)v(x) \,\mathrm{d}x - \int_{\mathcal{G}} |u(x)|^{p-2}u(x)v(x) \,\mathrm{d}x$$

If φ has compact support in the interior of an edge $e = {}_{\mathrm{AB}}$, we have

$$0 = J'_{\lambda}(u)[\varphi]$$

= $\int_{e} u'(x)\varphi'(x) dx + \lambda \int_{e} u(x)\varphi(x) dx - \int_{e} |u(x)|^{p-2}u(x)\varphi(x) dx$

Metric	graphs

NLS	
	Ш

The differential of $J_{\lambda}: H^1(\mathcal{G}) \to \mathbb{R}$ is given by

$$J'_{\lambda}(u)[v] = \int_{\mathcal{G}} u'(x)v'(x) \,\mathrm{d}x + \lambda \int_{\mathcal{G}} u(x)v(x) \,\mathrm{d}x - \int_{\mathcal{G}} |u(x)|^{p-2}u(x)v(x) \,\mathrm{d}x$$

If φ has compact support in the interior of an edge $e = {}_{\mathrm{AB}}$, we have

$$0 = J'_{\lambda}(u)[\varphi]$$

= $\int_{e} u'(x)\varphi'(x) dx + \lambda \int_{e} u(x)\varphi(x) dx - \int_{e} |u(x)|^{p-2}u(x)\varphi(x) dx$
= $\frac{du}{dx_{e}}(B)\underbrace{\varphi(B)}_{=0} - \frac{du}{dx_{e}}(A)\underbrace{\varphi(A)}_{=0}$
+ $\int_{e} (-u''(x) + \lambda u(x) - |u(x)|^{p-2}u(x))\varphi(x) dx$

Metric	graphs

NLS	

The differential of $J_{\lambda}: H^1(\mathcal{G}) \to \mathbb{R}$ is given by

$$J'_{\lambda}(u)[v] = \int_{\mathcal{G}} u'(x)v'(x) \,\mathrm{d}x + \lambda \int_{\mathcal{G}} u(x)v(x) \,\mathrm{d}x - \int_{\mathcal{G}} |u(x)|^{p-2}u(x)v(x) \,\mathrm{d}x$$

If φ has compact support in the interior of an edge $e = {}_{\mathrm{AB}}$, we have

$$0 = J'_{\lambda}(u)[\varphi]$$

= $\int_{e} u'(x)\varphi'(x) dx + \lambda \int_{e} u(x)\varphi(x) dx - \int_{e} |u(x)|^{p-2}u(x)\varphi(x) dx$
= $\frac{du}{dx_{e}}(B) \underbrace{\varphi(B)}_{=0} - \frac{du}{dx_{e}}(A) \underbrace{\varphi(A)}_{=0}$
+ $\int_{e} (-u''(x) + \lambda u(x) - |u(x)|^{p-2}u(x))\varphi(x) dx$

so that $u'' + |u|^{p-2}u = \lambda u$ on edges of \mathcal{G} .

Metric graphs	NLS	Ground states	Some proof techniques
---------------	-----	---------------	-----------------------

Let A be a vertex of \mathcal{G} and let B_1, \ldots, B_D be the vertices adjacent to A.

Metric graphs	NLS	Ground states	Some proof techniques

Let A be a vertex of \mathcal{G} and let B_1, \ldots, B_D be the vertices adjacent to A. Define φ so that it is affine on all edges of \mathcal{G} , $\varphi(A) = 1$ and $\varphi(V) = 0$ for all vertices $V \neq A$. Denote $e_i := AB_i$. Then,

Metric graphs NLS Ground states Some proot techniques	Metric graphs NLS Ground states Some proof techniques
---	---

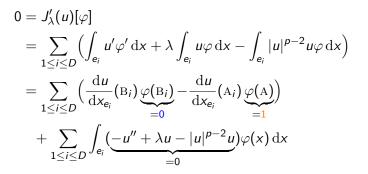
Let A be a vertex of \mathcal{G} and let B_1, \ldots, B_D be the vertices adjacent to A. Define φ so that it is affine on all edges of \mathcal{G} , $\varphi(A) = 1$ and $\varphi(V) = 0$ for all vertices $V \neq A$. Denote $e_i := AB_i$. Then,

$$0 = J'_{\lambda}(u)[\varphi]$$

= $\sum_{1 \le i \le D} \left(\int_{e_i} u' \varphi' \, \mathrm{d}x + \lambda \int_{e_i} u\varphi \, \mathrm{d}x - \int_{e_i} |u|^{p-2} u\varphi \, \mathrm{d}x \right)$

Metric graphs NLS Ground states Some proof techniq	ues
--	-----

Let A be a vertex of \mathcal{G} and let B_1, \ldots, B_D be the vertices adjacent to A. Define φ so that it is affine on all edges of \mathcal{G} , $\varphi(A) = 1$ and $\varphi(V) = 0$ for all vertices $V \neq A$. Denote $e_i := AB_i$. Then,



Metric graphs NLS Ground states Some proot techniques	Metric graphs NLS Ground states Some proof techniques
---	---

Let A be a vertex of \mathcal{G} and let B_1, \ldots, B_D be the vertices adjacent to A. Define φ so that it is affine on all edges of \mathcal{G} , $\varphi(A) = 1$ and $\varphi(V) = 0$ for all vertices $V \neq A$. Denote $e_i := AB_i$. Then,

$$0 = J'_{\lambda}(u)[\varphi]$$

$$= \sum_{1 \le i \le D} \left(\int_{e_i} u' \varphi' \, \mathrm{d}x + \lambda \int_{e_i} u\varphi \, \mathrm{d}x - \int_{e_i} |u|^{p-2} u\varphi \, \mathrm{d}x \right)$$

$$= \sum_{1 \le i \le D} \left(\frac{\mathrm{d}u}{\mathrm{d}x_{e_i}}(B_i) \underbrace{\varphi(B_i)}_{=0} - \frac{\mathrm{d}u}{\mathrm{d}x_{e_i}}(A_i) \underbrace{\varphi(A)}_{=1} \right)$$

$$+ \sum_{1 \le i \le D} \int_{e_i} \underbrace{(-u'' + \lambda u - |u|^{p-2}u)}_{=0} \varphi(x) \, \mathrm{d}x$$

so that $\sum_{1 \le i \le D} \frac{du}{dx_{e_i}}(A_i) = 0$, which is Kirchhoff's condition.

Metric graphs	NLS	Ground states	Some proof techniques

The Nehari manifold

The functional J_{λ} is not bounded from below on $H^1(\mathcal{G})$, since if $u \neq 0$ then

$$J_{\lambda}(tu) = \frac{t^2}{2} \|u'\|_{L^2(\mathcal{G})}^2 + \frac{\lambda t^2}{2} \|u\|_{L^2(\mathcal{G})}^2 - \frac{t^p}{p} \|u\|_{L^p(\mathcal{G})}^p \xrightarrow[t \to \infty]{} -\infty.$$

Metric graphs	NLS	Ground states	Some proof techniques

The Nehari manifold

The functional J_{λ} is not bounded from below on $H^1(\mathcal{G})$, since if $u \neq 0$ then

$$J_{\lambda}(tu) = \frac{t^2}{2} \|u'\|_{L^2(\mathcal{G})}^2 + \frac{\lambda t^2}{2} \|u\|_{L^2(\mathcal{G})}^2 - \frac{t^p}{p} \|u\|_{L^p(\mathcal{G})}^p \xrightarrow[t \to \infty]{} -\infty.$$

A common strategy is to introduce the Nehari manifold $\mathcal{N}_{\lambda}(\mathcal{G})$, defined by

$$\begin{split} \mathcal{N}_{\lambda}(\mathcal{G}) &:= \Big\{ u \in H^1(\mathcal{G}) \setminus \{0\} \mid J_{\lambda}'(u)[u] = 0 \Big\} \\ &= \Big\{ u \in H^1(\mathcal{G}) \setminus \{0\} \mid \|u'\|_{L^2(\mathcal{G})}^2 + \lambda \|u\|_{L^2(\mathcal{G})}^2 = \|u\|_{L^p(\mathcal{G})}^p \Big\}. \end{split}$$

Metric graphs	NLS	Ground states	Some proof techniques

The Nehari manifold

The functional J_{λ} is not bounded from below on $H^1(\mathcal{G})$, since if $u \neq 0$ then

$$J_{\lambda}(tu) = \frac{t^2}{2} \|u'\|_{L^2(\mathcal{G})}^2 + \frac{\lambda t^2}{2} \|u\|_{L^2(\mathcal{G})}^2 - \frac{t^p}{p} \|u\|_{L^p(\mathcal{G})}^p \xrightarrow[t \to \infty]{} -\infty.$$

A common strategy is to introduce the Nehari manifold $\mathcal{N}_{\lambda}(\mathcal{G})$, defined by

$$\begin{split} \mathcal{N}_{\lambda}(\mathcal{G}) &:= \Big\{ u \in \mathcal{H}^{1}(\mathcal{G}) \setminus \{0\} \mid J_{\lambda}'(u)[u] = 0 \Big\} \\ &= \Big\{ u \in \mathcal{H}^{1}(\mathcal{G}) \setminus \{0\} \mid \|u'\|_{L^{2}(\mathcal{G})}^{2} + \lambda \|u\|_{L^{2}(\mathcal{G})}^{2} = \|u\|_{L^{p}(\mathcal{G})}^{p} \Big\}. \end{split}$$

If $u \in \mathcal{N}_{\lambda}(\mathcal{G})$, then

$$J_{\lambda}(u) = \Big(rac{1}{2} - rac{1}{p}\Big) \|u\|_{L^p(\mathcal{G})}^p.$$

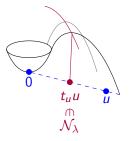
In particular, J_{λ} is bounded from below on $\mathcal{N}_{\lambda}(\mathcal{G})$.

Metric graphs	NLS	Ground states	Some proof techniques

The Nehari manifold Geometry¹

One can show that for every $u \in H^1(\mathcal{G}) \setminus \{0\}$, there exists a unique $t_u > 0$ so that $t_u u \in \mathcal{N}_{\lambda}(\mathcal{G})$, characterized by

$$J_{\lambda}(t_u u) = \max_{t>0} J_{\lambda}(tu).$$



¹Thanks to C. Troestler for the picture!

Metric graphs	NLS	Ground states	Some proof techniques

• « Ground state » energy level:

$$c_\lambda(\mathcal{G}):= \inf_{u\in\mathcal{N}_\lambda(\mathcal{G})}J_\lambda(u)$$

	Metric graphs	NLS	Ground states	Some proof techniques
--	---------------	-----	---------------	-----------------------

Ground state » energy level:

$$c_\lambda(\mathcal{G}) := \inf_{u \in \mathcal{N}_\lambda(\mathcal{G})} J_\lambda(u)$$

Ground state: function u ∈ N_λ(G) with level c_λ(G). It is a solution of the differential system (NLS).

	Metric graphs	NLS	Ground states	Some proof techniques
--	---------------	-----	---------------	-----------------------

Ground state » energy level:

$$c_\lambda(\mathcal{G}) := \inf_{u \in \mathcal{N}_\lambda(\mathcal{G})} J_\lambda(u)$$

- Ground state: function u ∈ N_λ(G) with level c_λ(G). It is a solution of the differential system (NLS).
- Minimal level attained by the solutions of (NLS):

$$\sigma_{\lambda}(\mathcal{G}) := \inf_{u \in \mathcal{S}_{\lambda}(\mathcal{G})} J_{\lambda}(u).$$

	Metric graphs	NLS	Ground states	Some proof techniques
--	---------------	-----	---------------	-----------------------

Ground state » energy level:

$$c_\lambda(\mathcal{G}) := \inf_{u \in \mathcal{N}_\lambda(\mathcal{G})} J_\lambda(u)$$

- Ground state: function u ∈ N_λ(G) with level c_λ(G). It is a solution of the differential system (NLS).
- Minimal level attained by the solutions of (NLS):

$$\sigma_{\lambda}(\mathcal{G}) := \inf_{u \in \mathcal{S}_{\lambda}(\mathcal{G})} J_{\lambda}(u).$$

Minimal action solution: solution $u \in S_{\lambda}(\mathcal{G})$ of the differential system (NLS) of level $\sigma_{\lambda}(\mathcal{G})$.

Metric graphs	NLS	Ground states	Some proof techniques

Metric graphs	NLS	Ground states	Some proof techniques

An analysis shows that four cases are possible:

A1) $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained;

Metric graphs	NLS	Ground states	Some proof techniques

- A1) $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained;
- A2) $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained;

Metric graphs	NLS	Ground states	Some proof techniques

- A1) $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained;
- A2) $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained;
- B1) $c_{\lambda}(\mathcal{G}) < \sigma_{\lambda}(\mathcal{G}), \sigma_{\lambda}(\mathcal{G})$ is attained but not $c_{\lambda}(\mathcal{G})$;

Metric graphs	NLS	Ground states	Some proof techniques

- A1) $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained;
- A2) $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained;
- B1) $c_{\lambda}(\mathcal{G}) < \sigma_{\lambda}(\mathcal{G})$, $\sigma_{\lambda}(\mathcal{G})$ is attained but not $c_{\lambda}(\mathcal{G})$;
- B2) $c_{\lambda}(\mathcal{G}) < \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained.

Metric graphs	NLS	Ground states	Some proof techniques

An analysis shows that four cases are possible:

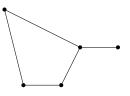
- A1) $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained;
- A2) $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained;
- B1) $c_{\lambda}(\mathcal{G}) < \sigma_{\lambda}(\mathcal{G}), \sigma_{\lambda}(\mathcal{G})$ is attained but not $c_{\lambda}(\mathcal{G})$;
- B2) $c_{\lambda}(\mathcal{G}) < \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained.

Theorem (De Coster, Dovetta, G., Serra (to appear))

For every p > 2, every $\lambda > 0$, and every choice of alternative between A1, A2, B1, B2, there exists a metric graph G where this alternative occurs.

Metric graphs	NLS	Ground states	Some proof techniques

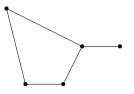
Case A1 $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained



Compact graphs

Metric graphs	NLS	Ground states	Some proof techniques

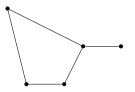
Case A1 $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained



Compact graphs

Metric graphs	NLS	Ground states	Some proof techniques

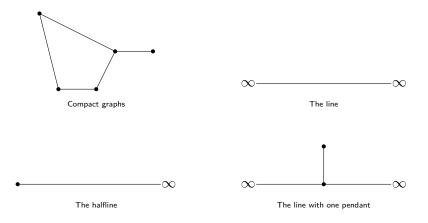
Case A1 $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained



The line

Metric graphs	NLS	Ground states	Some proof techniques

Case A1 $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained



Metric graphs	NLS	Ground states	Some proof techniques
---------------	-----	---------------	-----------------------

A very useful tool: cutting solitons on halflines

Proposition

Assume that \mathcal{G} has at least one halfline. Then,

 $c_\lambda(\mathcal{G}) \leq s_\lambda := J_\lambda(arphi_\lambda)$

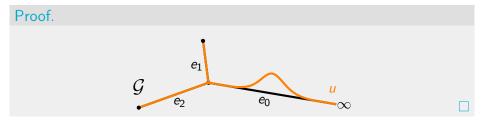
Metric graphs	NLS	Ground states	Some proof techniques
---------------	-----	---------------	-----------------------

A very useful tool: cutting solitons on halflines

Proposition

Assume that \mathcal{G} has at least one halfline. Then,

 $c_{\lambda}(\mathcal{G}) \leq s_{\lambda} := J_{\lambda}(\varphi_{\lambda})$



Metric graphs NLS Ground states Some proof techni	Some proof techniques
---	-----------------------

Case A1 $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained

Theorem (Adami, Serra, Tilli 2014)

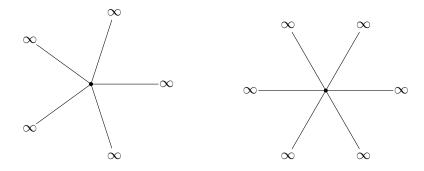
Let ${\cal G}$ be a metric graph with finitely many edges, including at least one halfline. Assume that

 $c_{\lambda}(\mathcal{G}) < s_{\lambda}.$

Then $c_{\lambda}(\mathcal{G})$ is attained, which means that there exists a ground state, so we are in case A1: $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$, both attained.

Metric graphs	NLS	Ground states	Some proof techniques

Case B1 $c_{\lambda}(\mathcal{G}) < \sigma_{\lambda}(\mathcal{G}), \ \sigma_{\lambda}(\mathcal{G})$ is attained but not $c_{\lambda}(\mathcal{G})$

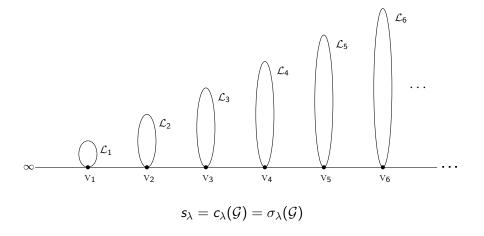


N-star graphs, $N \ge 3$

$$s_{\lambda} = c_{\lambda}(\mathcal{G}) < \sigma_{\lambda}(\mathcal{G}) = \frac{N}{2}s_{\lambda}$$

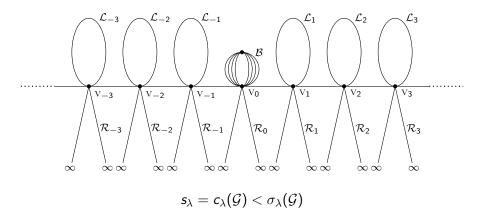
Metric graphs	NLS	Ground states	Some proof techniques

Case A2 $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained



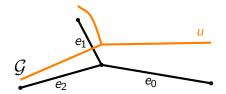
Metric graphs	NLS	Ground states	Some proof techniques

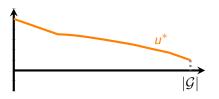
Case B2 $c_{\lambda}(\mathcal{G}) < \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained



Metric graphs	NLS	Ground states	Some proof techniques

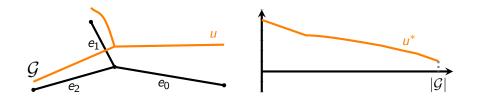
Decreasing rearrangement on the halfline





Metric graphs	NLS	Ground states	Some proof techniques

Decreasing rearrangement on the halfline

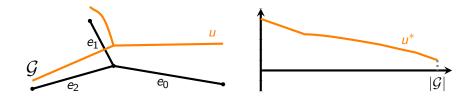


Fundamental property: for all t > 0,

 $\operatorname{meas}_{\mathcal{G}}(\{x \in \mathcal{G}, u(x) > t\}) = \operatorname{meas}_{\mathbb{R}^+}(\{x \in]0, |\mathcal{G}|[, u^*(x) > t\}).$

Metric graphs	NLS	Ground states	Some proof techniques

Decreasing rearrangement on the halfline



Fundamental property: for all t > 0,

 $\operatorname{meas}_{\mathcal{G}}(\{x \in \mathcal{G}, u(x) > t\}) = \operatorname{meas}_{\mathbb{R}^+}(\{x \in]0, |\mathcal{G}|[, u^*(x) > t\}).$

Consequence: for all $1 \le p \le +\infty$,

$$||u||_{L^{p}(\mathcal{G})} = ||u^{*}||_{L^{p}(0,|\mathcal{G}|)}.$$

	Metric graphs	NLS	Ground states	Some proof techniques
--	---------------	-----	---------------	-----------------------

Theorem

Let $u \in H^1(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^* belongs to $H^1(0, |\mathcal{G}|)$, and one has

 $\|(u^*)'\|_{L^2(0,|\mathcal{G}|)} \le \|u'\|_{L^2(\mathcal{G})}.$

	Metric graphs	NLS	Ground states	Some proof techniques
--	---------------	-----	---------------	-----------------------

Theorem

Let $u \in H^1(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^* belongs to $H^1(0, |\mathcal{G}|)$, and one has

 $\|(u^*)'\|_{L^2(0,|\mathcal{G}|)} \le \|u'\|_{L^2(\mathcal{G})}.$

Pólya, G., Szegő, G. Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies. Princeton, N.J. Princeton University Press. (1951).

Metric graphs	NLS	Ground states	Some proof techniques

Theorem

Let $u \in H^1(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^* belongs to $H^1(0, |\mathcal{G}|)$, and one has

 $\|(u^*)'\|_{L^2(0,|\mathcal{G}|)} \le \|u'\|_{L^2(\mathcal{G})}.$

- Pólya, G., Szegő, G. Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies. Princeton, N.J. Princeton University Press. (1951).
- Duff, G. Integral Inequalities for Equimeasurable Rearrangements. Canadian Journal of Mathematics 22 (1970), no. 2, 408–430.

Metric graphs	NLS	Ground states	Some proof techniques

Theorem

Let $u \in H^1(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^* belongs to $H^1(0, |\mathcal{G}|)$, and one has

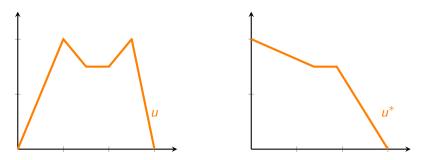
 $\|(u^*)'\|_{L^2(0,|\mathcal{G}|)} \le \|u'\|_{L^2(\mathcal{G})}.$

- Pólya, G., Szegő, G. Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies. Princeton, N.J. Princeton University Press. (1951).
- Duff, G. Integral Inequalities for Equimeasurable Rearrangements. Canadian Journal of Mathematics 22 (1970), no. 2, 408–430.

Friedlander, L. *Extremal properties of eigenvalues for a metric graph.* Ann. Inst. Fourier (Grenoble) **55** (2005) no. 1, 199–211.

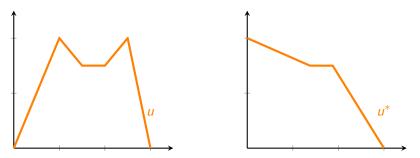
Metric graphs NLS	Ground states Some proof techniq	ques
-------------------	----------------------------------	------

We assume that u is piecewise affine.



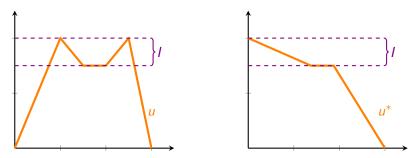
Metric graphs	NLS	Ground states	Some proof techniques

We assume that u is piecewise affine.



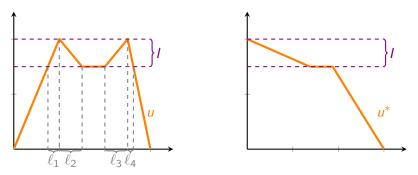
Metric graphs	NLS	Ground states	Some proof techniques

We assume that u is piecewise affine.



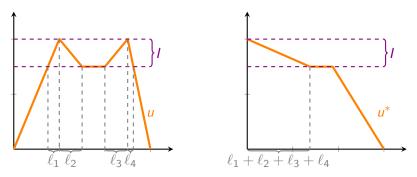
Metric graphs	NLS	Ground states	Some proof techniques

We assume that u is piecewise affine.



Metric graphs	NLS	Ground states	Some proof techniques

We assume that u is piecewise affine.



	Metric graphs	NLS	Ground states	Some proof techniques
--	---------------	-----	---------------	-----------------------

Original contribution to $||u'||_{L^2}^2$:

$$A := \ell_1 \frac{|I|^2}{\ell_1^2} + \ell_2 \frac{|I|^2}{\ell_2^2} + \ell_3 \frac{|I|^2}{\ell_3^2} + \ell_4 \frac{|I|^2}{\ell_4^2}$$

Metric graphs	NLS	Ground states	Some proof techniques

Original contribution to $||u'||_{L^2}^2$:

$$A := \ell_1 \frac{|I|^2}{\ell_1^2} + \ell_2 \frac{|I|^2}{\ell_2^2} + \ell_3 \frac{|I|^2}{\ell_3^2} + \ell_4 \frac{|I|^2}{\ell_4^2} = \frac{|I|^2}{\ell_1} + \frac{|I|^2}{\ell_2} + \frac{|I|^2}{\ell_3} + \frac{|I|^2}{\ell_4}$$

	Metric graphs	NLS	Ground states	Some proof techniques
--	---------------	-----	---------------	-----------------------

Original contribution to $||u'||_{L^2}^2$:

$$A := \ell_1 \frac{|I|^2}{\ell_1^2} + \ell_2 \frac{|I|^2}{\ell_2^2} + \ell_3 \frac{|I|^2}{\ell_3^2} + \ell_4 \frac{|I|^2}{\ell_4^2} = \frac{|I|^2}{\ell_1} + \frac{|I|^2}{\ell_2} + \frac{|I|^2}{\ell_3} + \frac{|I|^2}{\ell_4}$$

Contribution to $||(u^*)'||_{L^2}^2$:

$$B := \frac{|I|^2}{\ell_1 + \ell_2 + \ell_3 + \ell_4}$$

Metric graphs NLS Ground states Some proof t	echniques
--	-----------

Original contribution to $||u'||_{L^2}^2$:

$$A := \ell_1 \frac{|I|^2}{\ell_1^2} + \ell_2 \frac{|I|^2}{\ell_2^2} + \ell_3 \frac{|I|^2}{\ell_3^2} + \ell_4 \frac{|I|^2}{\ell_4^2} = \frac{|I|^2}{\ell_1} + \frac{|I|^2}{\ell_2} + \frac{|I|^2}{\ell_3} + \frac{|I|^2}{\ell_4}$$

Contribution to $||(u^*)'||_{L^2}^2$:

$$B := \frac{|I|^2}{\ell_1 + \ell_2 + \ell_3 + \ell_4}$$

Inequality between arithmetic and harmonic means:

$$\frac{\ell_1 + \ell_2 + \ell_3 + \ell_4}{4} \geq \frac{4}{\frac{1}{\ell_1} + \frac{1}{\ell_2} + \frac{1}{\ell_3} + \frac{1}{\ell_4}}$$

	Metric graphs	NLS	Ground states	Some proof techniques
--	---------------	-----	---------------	-----------------------

Original contribution to $||u'||_{L^2}^2$:

$$A := \ell_1 \frac{|I|^2}{\ell_1^2} + \ell_2 \frac{|I|^2}{\ell_2^2} + \ell_3 \frac{|I|^2}{\ell_3^2} + \ell_4 \frac{|I|^2}{\ell_4^2} = \frac{|I|^2}{\ell_1} + \frac{|I|^2}{\ell_2} + \frac{|I|^2}{\ell_3} + \frac{|I|^2}{\ell_4}$$

Contribution to $||(u^*)'||_{L^2}^2$:

$$B := \frac{|I|^2}{\ell_1 + \ell_2 + \ell_3 + \ell_4}$$

Inequality between arithmetic and harmonic means:

$$\frac{\ell_1 + \ell_2 + \ell_3 + \ell_4}{4} \geq \frac{4}{\frac{1}{\ell_1} + \frac{1}{\ell_2} + \frac{1}{\ell_3} + \frac{1}{\ell_4}} \quad \Rightarrow \quad A \geq 4^2 B \geq B.$$

Metric graphs	NLS	Ground states	Some proof techniques

A refined Pólya–Szegő inequality...

... or the importance of the number of preimages

Theorem

Let $u \in H^1(\mathcal{G})$ be a nonnegative function. Let $N \ge 1$ be an integer. Assume that, for almost every $t \in]0, ||u||_{\infty}[$, one has

$$u^{-1}({t}) = {x \in \mathcal{G} \mid u(x) = t} \ge N.$$

Then one has

$$\|(u^*)'\|_{L^2(0,|\mathcal{G}|)} \leq \frac{1}{N} \|u'\|_{L^2(\mathcal{G})}.$$

Metric graphs	NLS	Ground states	Some proof techniques

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_0 \in \mathcal{G}$, there exist two injective curves $\gamma_1, \gamma_2 : [0, +\infty[\rightarrow \mathcal{G} \text{ parameterized} by arclength, with disjoint images except for an at most countable number of points, and such that <math>\gamma_1(0) = \gamma_2(0) = x_0$.

Metric graphs	NLS	Ground states	Some proof techniques

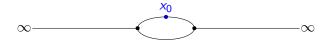
Definition (Adami, Serra, Tilli 2014)

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_0 \in \mathcal{G}$, there exist two injective curves $\gamma_1, \gamma_2 : [0, +\infty[\rightarrow \mathcal{G} \text{ parameterized} by arclength, with disjoint images except for an at most countable number of points, and such that <math>\gamma_1(0) = \gamma_2(0) = x_0$.

Metric graphs	NLS	Ground states	Some proof techniques

Definition (Adami, Serra, Tilli 2014)

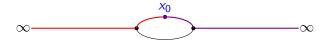
We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_0 \in \mathcal{G}$, there exist two injective curves $\gamma_1, \gamma_2 : [0, +\infty[\rightarrow \mathcal{G} \text{ parameterized} by arclength, with disjoint images except for an at most countable number of points, and such that <math>\gamma_1(0) = \gamma_2(0) = x_0$.



Metric graphs	NLS	Ground states	Some proof techniques

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_0 \in \mathcal{G}$, there exist two injective curves $\gamma_1, \gamma_2 : [0, +\infty[\rightarrow \mathcal{G} \text{ parameterized})$ by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_1(0) = \gamma_2(0) = x_0$.



Metric graphs	NLS	Ground states	Some proof techniques

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_0 \in \mathcal{G}$, there exist two injective curves $\gamma_1, \gamma_2 : [0, +\infty[\rightarrow \mathcal{G} \text{ parameterized}$ by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_1(0) = \gamma_2(0) = x_0$.



Consequence: all nonnegative $H^1(\mathcal{G})$ functions have at least two preimages for almost every $t \in]0, ||u||_{\infty}[$.

Metric graphs	NLS	Ground states	Some proof techniques

Theorem (Adami, Serra, Tilli 2014)

If a metric graph \mathcal{G} satisfies assumption (H), then

$$c_{\lambda}(\mathcal{G}) := \inf_{u \in \mathcal{N}_{\lambda}(\mathcal{G})} J_{\lambda}(u) = s_{\lambda}$$

but it is never achieved

Metric graphs	NLS	Ground states	Some proof techniques

Theorem (Adami, Serra, Tilli 2014)

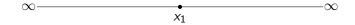
If a metric graph G satisfies assumption (H), then

$$c_{\lambda}(\mathcal{G}) := \inf_{u \in \mathcal{N}_{\lambda}(\mathcal{G})} J_{\lambda}(u) = s_{\lambda}$$

but it is never achieved, unless \mathcal{G} is isometric to one of the exceptional graphs depicted in the next two slides.

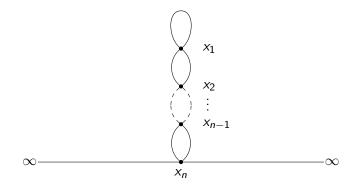
Metric graphs	NLS	Ground states	Some proof techniques

Exceptional graphs: the real line



Metric graphs NLS Ground states	Some proof techniques
---------------------------------	-----------------------

Exceptional graphs: the real line with a tower of circles



Metric graphs	NLS	Ground states	Some proof techniques

A doubly constrained variational problem

We define

$$X_e := \left\{ u \in H^1(\mathcal{G}) \mid \|u\|_{L^{\infty}(\mathcal{G})} = \|u\|_{L^{\infty}(e)} \right\}$$

where e is a given bounded edge of \mathcal{G}

Metric graphs	NLS	Ground states	Some proof techniques

A doubly constrained variational problem

We define

$$X_e := \left\{ u \in H^1(\mathcal{G}) \mid \|u\|_{L^{\infty}(\mathcal{G})} = \|u\|_{L^{\infty}(e)} \right\}$$

where e is a given bounded edge of \mathcal{G} and we consider the doubly–constrained minimization problem

$$c_{\lambda}(\mathcal{G}, e) := \inf_{u \in \mathcal{N}_{\lambda}(\mathcal{G}) \cap X_e} J_{\lambda}(u).$$

Metric graphs	NLS	Ground states	Some p

A doubly constrained variational problem

We define

$$X_e := \left\{ u \in H^1(\mathcal{G}) \mid \|u\|_{L^{\infty}(\mathcal{G})} = \|u\|_{L^{\infty}(e)} \right\}$$

where e is a given bounded edge of \mathcal{G} and we consider the doubly–constrained minimization problem

$$c_{\lambda}(\mathcal{G}, e) := \inf_{u \in \mathcal{N}_{\lambda}(\mathcal{G}) \cap X_e} J_{\lambda}(u).$$

Theorem (De Coster, Dovetta, G., Serra (to appear))

If \mathcal{G} satisfies assumption (H) has a **long enough** bounded edge e, then $c_{\lambda}(\mathcal{G}, e)$ is attained by a solution $u \in S_{\lambda}(\mathcal{G})$, such that u > 0 or u < 0 on \mathcal{G} and

$$\|u\|_{L^{\infty}(e)} > \|u\|_{L^{\infty}(\mathcal{G}\setminus e)}.$$

proof techniques

NLS

Ground states

Some proof techniques

Why studying metric graphs? Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer than the usual class of intervals of \mathbb{R} .

NLS

Ground states

Some proof techniques

Why studying metric graphs? Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer than the usual class of intervals of \mathbb{R} .

NLS

Ground states

Some proof techniques

Why studying metric graphs? Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer than the usual class of intervals of \mathbb{R} .

Dimension one has many advantages:

"nice" Sobolev embeddings

NLS

Ground states

Some proof techniques

Why studying metric graphs? Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer than the usual class of intervals of \mathbb{R} .

Dimension one has many advantages:

• "nice" Sobolev embeddings, H^1 functions are continuous;

NLS

Ground states

Some proof techniques

Why studying metric graphs? Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer than the usual class of intervals of \mathbb{R} .

- "nice" Sobolev embeddings, H¹ functions are continuous;
- counting preimages;

NLS

Ground states

Some proof techniques

Why studying metric graphs? Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer than the usual class of intervals of \mathbb{R} .

- "nice" Sobolev embeddings, H¹ functions are continuous;
- counting preimages;
- ODE techniques;

NLS

Ground states

Some proof techniques

Why studying metric graphs? Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer than the usual class of intervals of \mathbb{R} .

- "nice" Sobolev embeddings, H¹ functions are continuous;
- counting preimages;
- ODE techniques;
- ...;

NLS

Ground states

Some proof techniques

Why studying metric graphs? Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer than the usual class of intervals of \mathbb{R} .

Dimension one has many advantages:

- "nice" Sobolev embeddings, H¹ functions are continuous;
- counting preimages;
- ODE techniques;

...;

Replacing \mathcal{G} by noncompact smooth open sets $\Omega \subseteq \mathbb{R}^d$, $d \geq 2$ and $H^1(\mathcal{G})$ by $H^1(\Omega)$ or $H^1_0(\Omega)$, one expects that the four cases A1, A2, B1, B2 actually occur.

NLS

Ground states

Some proof techniques

Why studying metric graphs? Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer than the usual class of intervals of \mathbb{R} .

Dimension one has many advantages:

- "nice" Sobolev embeddings, H¹ functions are continuous;
- counting preimages;
- ODE techniques;

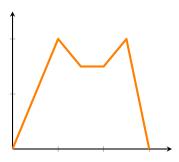
...;

Replacing \mathcal{G} by noncompact smooth open sets $\Omega \subseteq \mathbb{R}^d$, $d \geq 2$ and $H^1(\mathcal{G})$ by $H^1(\Omega)$ or $H^1_0(\Omega)$, one expects that the four cases A1, A2, B1, B2 actually occur. However, to this day, *it remains on open problem*!

Thanks	ļ

Cases A2 and B2

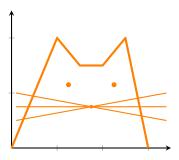
Thanks for your attention!



Thanks	ļ

Cases A2 and B2

Thanks for your attention!



Thanks!	References	Atomtronics	Cases A2 and B2

Main papers

- Adami, R., Serra, E., Tilli, P. *NLS ground states on graphs.* Calculus of Variations and Partial Differential Equations, 54(1), 743-761 (2015).
- De Coster C., Dovetta S., Galant D., Serra E. On the notion of ground state for nonlinear Schrödinger equations on metric graphs. To appear.

Overviews of the subject

- Adami R. Ground states of the Nonlinear Schrodinger Equation on Graphs: an overview (Lisbon WADE). https://www.youtube.com/watch?v=G-FcnRVvoos (2020)
- Adami R., Serra E., Tilli P. Nonlinear dynamics on branched structures and networks. https://arxiv.org/abs/1705.00529 (2017)
- Kairzhan A., Noja D., Pelinovsky D. *Standing waves on quantum graphs.* J. Phys. A: Math. Theor. 55 243001 (2022)

Thanks!	References	Atomtronics	Cases A2 and B2
		•	

• A *boson*² is a particle with integer spin.

²Here we will consider composite bosons, like atoms.

Thanks!	References	Atomtronics	Cases A2 and B2
		•	

- A *boson*² is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a *unique lowest energy quantum state*.

²Here we will consider composite bosons, like atoms.

Thanks!	References	Atomtronics	Cases A2 and B2
		•	

- A *boson*² is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a *unique lowest energy quantum state*.
- This phenomenon is known at Bose-Einstein condensation.

²Here we will consider composite bosons, like atoms.

Thanks!	References	Atomtronics	Cases A2 and B2
		•	

- A *boson*² is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a *unique lowest energy quantum state*.
- This phenomenon is known at Bose-Einstein condensation.
- This is really remarkable: *macroscopic quantum phenomenon!*

²Here we will consider composite bosons, like atoms.

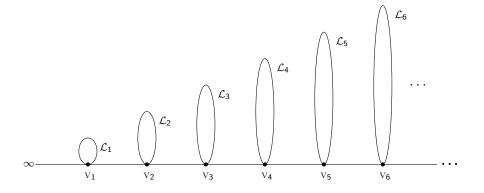
Thanks!	References	Atomtronics	Cases A2 and B2
		•	

- A *boson*² is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a *unique lowest energy quantum state*.
- This phenomenon is known at Bose-Einstein condensation.
- This is really remarkable: *macroscopic quantum phenomenon!*
- Since 2000: emergence of *atomtronics*, which studies circuits guiding the propagation of ultracold atoms.

²Here we will consider composite bosons, like atoms.

Thanks!	References	Atomtronics	Cases A2 and B2

What's going on in case A2? $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained



Thanks!	References	Atomtronics	Cases A2 and B2

Since G has at least one halfline and satisfies assumption (H), one has c_λ(G) = s_λ and the infimum is not attained (as G does not belong to the class of exceptional graphs).

Thanks!	References	Atomtronics	Cases A2 and B2

- Since G has at least one halfline and satisfies assumption (H), one has c_λ(G) = s_λ and the infimum is not attained (as G does not belong to the class of exceptional graphs).
- Cutting solitons on the loops, one sees that

$$c_{\lambda}(\mathcal{G},\mathcal{L}_n) \xrightarrow[n \to \infty]{} s_{\lambda}$$

Thanks!	References	Atomtronics	Cases A2 and B2

- Since G has at least one halfline and satisfies assumption (H), one has c_λ(G) = s_λ and the infimum is not attained (as G does not belong to the class of exceptional graphs).
- Cutting solitons on the loops, one sees that

$$c_{\lambda}(\mathcal{G},\mathcal{L}_n) \xrightarrow[n \to \infty]{} s_{\lambda}$$

According to the existence Theorems, $c_{\lambda}(\mathcal{G}, \mathcal{L}_n)$ is attained by a solution of (NLS) for every *n* large enough.

Thanks!	References	Atomtronics	Cases A2 and B2

- Since G has at least one halfline and satisfies assumption (H), one has c_λ(G) = s_λ and the infimum is not attained (as G does not belong to the class of exceptional graphs).
- Cutting solitons on the loops, one sees that

$$c_{\lambda}(\mathcal{G},\mathcal{L}_n) \xrightarrow[n \to \infty]{} s_{\lambda}$$

- According to the existence Theorems, $c_{\lambda}(\mathcal{G}, \mathcal{L}_n)$ is attained by a solution of (NLS) for every *n* large enough.
- One obtains

$$s_{\lambda} = c_{\lambda}(\mathcal{G}) \leq \sigma_{\lambda}(\mathcal{G}) \leq \liminf_{n \to \infty} c_{\lambda}(\mathcal{G}, \mathcal{L}_n) = s_{\lambda},$$

SO

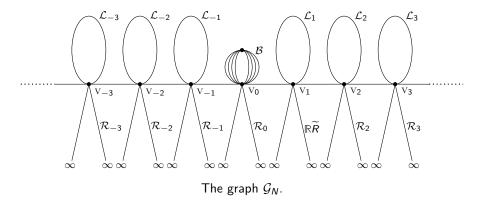
$$c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G}) = s_{\lambda}$$

and neither infimum is attained.

Damien Galant

Thanks!	References	Atomtronics	Cases A2 and B2

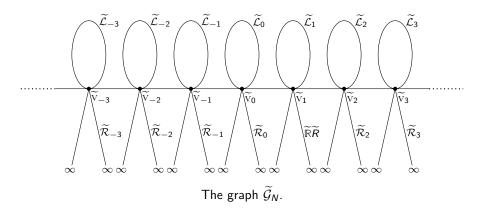
$c_\lambda(\mathcal{G}) < \sigma_\lambda(\mathcal{G})$ and neither infima is attained



The loops \mathcal{L}_i have length N and \mathcal{B} is made of N edges of length 1.

Thanks!	References	Atomtronics	Cases A2 and B2

A second, periodic, graph



Thanks!	References	Atomtronics	Cases A2 and B2

Since \mathcal{G}_N and $\widetilde{\mathcal{G}}_N$ satisfy (H) and contain halflines, one has

$$s_{\lambda} = c_{\lambda}(\mathcal{G}_N) = c_{\lambda}(\widetilde{\mathcal{G}}_N),$$

and neither infima is attained.

Thanks!	References	Atomtronics	Cases A2 and B2

Since \mathcal{G}_N and $\widetilde{\mathcal{G}}_N$ satisfy (H) and contain halflines, one has

$$s_{\lambda} = c_{\lambda}(\mathcal{G}_N) = c_{\lambda}(\widetilde{\mathcal{G}}_N),$$

and neither infima is attained.

• One can show that, if N is large enough, then $\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N})$ is attained (using the periodicity of $\widetilde{\mathcal{G}}_{N}$).

Thanks!	References	Atomtronics	Cases A2 and B2

Since \mathcal{G}_N and $\widetilde{\mathcal{G}}_N$ satisfy (H) and contain halflines, one has

$$s_{\lambda} = c_{\lambda}(\mathcal{G}_N) = c_{\lambda}(\widetilde{\mathcal{G}}_N),$$

and neither infima is attained.

• One can show that, if N is large enough, then $\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N})$ is attained (using the periodicity of $\widetilde{\mathcal{G}}_{N}$). Hence $\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N}) > s_{\lambda}$.

Thanks!	References	Atomtronics	Cases A2 and B2

Since \mathcal{G}_N and $\widetilde{\mathcal{G}}_N$ satisfy (H) and contain halflines, one has

$$s_{\lambda} = c_{\lambda}(\mathcal{G}_N) = c_{\lambda}(\widetilde{\mathcal{G}}_N),$$

and neither infima is attained.

- One can show that, if N is large enough, then $\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N})$ is attained (using the periodicity of $\widetilde{\mathcal{G}}_{N}$). Hence $\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N}) > s_{\lambda}$.
- One then shows, using suitable rearrangement techniques, that

$$\sigma_{\lambda}(\mathcal{G}_{N}) = \sigma_{\lambda}(\widetilde{\mathcal{G}}_{N}),$$

but that $\sigma_{\lambda}(\mathcal{G}_N)$ is not attained.

Thanks!	References	Atomtronics	Cases A2 and B2

Since \mathcal{G}_N and $\widetilde{\mathcal{G}}_N$ satisfy (H) and contain halflines, one has

$$s_{\lambda} = c_{\lambda}(\mathcal{G}_N) = c_{\lambda}(\widetilde{\mathcal{G}}_N),$$

and neither infima is attained.

- One can show that, if N is large enough, then $\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N})$ is attained (using the periodicity of $\widetilde{\mathcal{G}}_{N}$). Hence $\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N}) > s_{\lambda}$.
- One then shows, using suitable rearrangement techniques, that

$$\sigma_{\lambda}(\mathcal{G}_{N})=\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N}),$$

but that $\sigma_{\lambda}(\mathcal{G}_N)$ is not attained.

• Therefore, for large N, we have that

$$s_{\lambda} = c_{\lambda}(\mathcal{G}_N) < \sigma_{\lambda}(\mathcal{G}_N),$$

and neither infima is attained, as claimed.